Sabtu, 15 Juni 2013

SESAR

Struktur Geologi Sesar

1. Pengertian Sesar
Patahan atau sesar (fault) adalah satu bentuk rekahan pada lapisan batuan bumi yg menyebabkan satu blok batuan bergerak relatif terhadap blok yang lain. Pergerakan bisa relatif turun, relatif naik, ataupun bergerak relatif mendatar terhadap blok yg lain. Pergerakan yg tiba-tiba dari suatu patahan atau sesar bisa mengakibatkan gempa bumi. Sesar (fault) merupakan bidang rekahan atau zona rekahan pada batuan yang sudah mengalami pergeseran (Williams, 2004). Sesar terjadi sepanjang retakan pada kerak bumi yang terdapat slip diantara dua sisi yang terdapat sesar tersebut (Williams, 2004). Beberapa istilah yang dipakai dalam analisis sesar antara lain
a. Jurus sesar (strike of fault) adalah arah garis perpotongan bidang sesar dengan bidang horisontal dan biasanya diukur dari arah utara.
b. Kemiringan sesar (dip of fault) adalah sudut yang dibentuk antara bidang sesar dengan bidang horisontal, diukur tegak lurus strike.
c.  Net slip adalah pergeseran relatif suatu titik yang semula berimpit pada bidang sesar akibat adanya sesar.
d. Rake adalah sudut yang dibentuk oleh net slip dengan strike slip (pergeseran horisontal searah jurus) pada bidang sesar.

Gambar 1. Bagian-bagian Sesar

Keterangan gambar tersebut adalah
α  = dip
β  = rake of net slip
θ  = hade = 90o – dip
ab = net slip
ac = strike slip
cb = ad = dip slip
ae = vertical slip = throw
de = horizontal slip = heave

  Dalam penjelasan sesar, digunakan istilah hanging wall dan foot wall sebagai penunjuk bagian blok badan sesar. Hanging wall merupakan bagian tubuh batuan yang relatif berada di atas bidang sesar. Foot wall merupakan bagian batuan yang relatif berada di bawah bidang sesar.

Gambar 2. Hanging wall dan foot wall.

2. Ciri-ciri Sesar
Secara garis besar, sesar dibagi menjadi dua, yaitu sesar tampak dan sesar buta (blind fault). Sesar yang tampak adalah sesar yang mencapai permukaan bumi sedangkan sesar buta adalah sesar yang
terjadi di bawah permukaan bumi dan tertutupi oleh lapisan seperti lapisan deposisi sedimen. Pengenalan sesar di lapangan biasanya cukup sulit. Beberapa kenampakan yang dapat digunakan sebagai penunjuk adanya sesar antara lain :
a. Adanya struktur yang tidak menerus (lapisan terpotong dengan tiba-tiba)
b. Adanya perulangan lapisan atau hilangnya lapisan batuan.
c. Kenampakan khas pada bidang sesar, seperti cermin sesar, gores garis.

Gambar 3. Gores Garis (slickens slides)
d. kenampakan khas pada zona sesar, seperti seretan (drag), breksi sesar, horses, atau lices, milonit.

Gambar 4. Zona sesar
e. silisifikasi dan mineralisasi sepanjang zona sesar.
f. perbedaan fasies sedimen.
g. petunjuk fisiografi, seperti gawir (scarp), scarplets (piedmont scarp), triangular facet, dan terpotongnya bagian depan rangkaian pegunungan struktural.


Gambar 5. Triangular facet


Gambar 6. Faulth scarp
h. Adanya boundins : lapisan batuan yang terpotong-potong akibat sesar.

Gambar 7. Boundins

3. Klasifikasi Sesar
Klasifikasi sesar dapat dibedakan berdasarkan geometri dan genesanya
a. Klasifikasi geometris
1) Berdasarkan rake dari net slip.
·         strike slip fault (rake=0º)
·         diagonal slip fault (0 º < rake <90º)
·         dip slip fault (rake=90º)
2) Berdasarkan kedudukan relatif bidang sesar terhadap bidang perlapisan atau struktur regional
·         strike fault (jurus sesar sejajar jurus lapisan)
·         bedding fault (sesar sejajar lapisan)
·         dip fault (jurus sesar tegak lurus jurus lapisan)
·         oblique / diagonal fault (menyudut terhadap jurus lapisan)
·         longitudinal fault (sejajar struktur regional)
·         transversal fault (menyudut struktur regional)
3) Berdasarkan besar sudut bidang sesar
·         high angle fault (lebih dari 45o)
·         low angle fault (kurang dari 45o)
4) Berdasarkan pergerakan semu
·         normal fault (sesar turun)
·         reverse fault (sesar naik)
5) Berdasarkan pola sesar
·         paralel fault (sesar saling sejajar)
·         en chelon fault (sesar saling overlap dan sejajar)
·         peripheral fault (sesar melingkar dan konsentris)
·         radial fault (sesar menyebar dari satu pusat)
Gambar 8. Klasifikasi sesar

b. Klasifikasi genetis
Berdasarkan orientasi pola tegasan yang utama (Anderson, 1951) sesar dapat dibedakan menjadi :
·         Sesar anjak (thrust fault) bila tegasan maksimum dan menengah mendatar.
·         Sesar normal bila tegasan utama vertikal.
·         Strike slip fault atau wrench fault (high dip, transverse to regional structure)

4. Beberapa Jenis Sesar dan Penjelasannya
a. Sesar Normal / Sesar Turun (Extention Faulth)
Sesar normal dikenali juga sebagai sesar gravitasi, dengan gaya gravitasi sebagai gaya utama yang menggerakannya. Ia juga dikenali sebagai sesar ekstensi (Extention Faulth) sebab ia memanjangkan perlapisan, atau menipis kerak bumi. Sesar normal yang mempunyai salah yang menjadi datar di bagian dalam bumi dikenali sebagai sesar listrik. Sesar listrik ini juga dikaitkan dengan sesar tumbuh (growth fault), dengan pengendapan dan pergerakan sesar berlaku serentak. Satah sesar normal menjadi datar ke dalam bumi, sama seperti yang berlaku ke atas sesar sungkup. Pada permukaan bumi, sesar normal juga jarang sekali berlaku secara bersendirian, tetapi bercabang.
Cabang sesar yang turun searah dengan sesar utama dikenali sebagai sesar sintetik, sementara sesar yang berlawanan arah dikenali sebagai sesar antitetik. Kedua cabang sesar ini bertemu dengan sesar utama di bagian dalam bumi. Sesar normal sering dikaitkan dengan perlipatan. Misalnya, sesar di bagian dalam bumi akan bertukar menjadi lipatan monoklin di permukaan.
Hanging wall relatif turun terhadap foot wall, bidang sesarnya mempunyai kemiringan yang besar. Sesar ini biasanya disebut juga sesar turun.
Gambar 9. Extention Faulth

Patahan atau sesar turun adalah satu bentuk rekahan pada lapisan bumi yang menyebabkan satu blok batuan bergerak relatif turun terhadap blok lainnya. Fault scarp adalah bidang miring imaginer tadi atau dalam kenyataannya adalah permukaan dari bidang sesar.

b. Sesar naik (reverse fault / contraction faulth)
Sesar naik (reverse fault) untuk sesar naik ini bagian hanging wall-nya relatif bergerak naik terhadap bagian foot wall. Salah satu ciri sesar naik adalah sudut kemiringan dari sesar itu termasuk kecil, berbeda dengn sesar turun yang punya sudut kemiringan bisa mendekati vertical. Nampak lapisan batuan yg berwarna lebih merah pada hanging wall berada pada posisi yg lebih atas dari lapisan batuan yg sama pada foot wall. Ini menandakan lapisan yg ada di hanging wall udah bergerak relatif naik terhadap foot wall-nya.
Gambar 10. Reverse fault / contraction faulth

c. Sesar mendatar (Strike slip fault / Transcurent fault / Wrench fault)
Sesar mendatar (Strike slip fault / Transcurent fault / Wrench fault) adalah sesar yang pembentukannya dipengaruhi oleh tegasan kompresi. Posisi tegasan utama pembentuk sesar ini adalah horizontal, sama dengan posisi tegasan minimumnya, sedangkan posisi tegasan menengah adalah vertikal. Umumnya bidang sesar mendatar digambarkan sebagai bidang vertikal, sehingga istilah hanging wall dan foot wall tidak lazim digunakan di dalam sistem sesar ini. Berdasarkan gerak relatifnya, sesar ini dibedakan menjadi sinistral (mengiri) dan dekstral (menganan).

Gambar 11. Strike slip fault / Transcurent fault / Wrench fault

5. Aplikasi Sesar dalam Bidang Geologi
  • ·         Petroleum system
  • ·         Geothermal
  • ·         Geoteknik
  • ·         Penanggulangan daerah rawan bencana

ALTERASI HIDROTERMAL

 Mineralisasi dan Alterasi dalam Sistem Hidrotermal
      Larutan hidrotermal terbentuk pada fase akhir siklus pembekuan magma. Interaksi antara larutan hidrotermal dengan batuan yang dilewati akan menyebabkan terubahnya mineral-mineral penyusun batuan samping dan membentuk mineral alterasi. Larutan hidrotermal tersebut akan terendapkan pada suatu tempat membentuk mineralisasi (Bateman, 1981). Faktor-faktor dominan yang mempengaruhi pengendapan mineral di dalam sistem hidrotermal terdiri dari empat macam (Barnes, 1979; Guilbert dan Park, 1986), yaitu: (1) Perubahan temperatur; (2) Perubahan tekanan; (3) Reaksi kimia antara fluida hidrotermal dengan batuan yang dilewati; dan (4) Percampuran antara dua larutan yang berbeda. Temperatur dan pH fluida merupakan faktor terpenting yang mempengaruhi mineralogi sistem hidrotermal. Tekanan langsung berhubungan dengan temperatur, dan konsentrasi unsur terekspresikan di dalam pH batuan hasil mineralisasi (Corbett dan Leach, 1996).
    Guilbert dan Park (1986) mengemukakan alterasi merupakan perubahan di dalam komposisi mineralogi suatu batuan (terutama secara fisik dan kimia), khususnya diakibatkan oleh aksi dari fluida hidrotermal. Alterasi hidrotermal merupakan konversi dari gabungan beberapa mineral membentuk mineral baru yang lebih stabil di dalam kondisi temperatur, tekanan dan komposisi hidrotermal tertentu (Barnes, 1979; Reyes, 1990 dalam Hedenquist, 1998). Mineralogi batuan alterasi dapat mengindikasikan komposisi atau pH fluida hidrotermal (Henley et al., 1984 dalam Hedenquist, 1998).
Corbett dan Leach (1996) mengemukakan komposisi batuan samping berperan mengkontrol mineralogi alterasi. Mineralogi skarn terbentuk di dalam batuan karbonatan. Fase adularia K-feldspar dipengaruhi oleh batuan kaya potasium. Paragonit (Na-mika) terbentuk pada proses alterasi yang mengenai batuan berkomposisi albit. Muskovit terbentuk di dalam alterasi batuan potasik.
           Sistem pembentukan mineralisasi di lingkaran Pasifik secara umum terdiri dari endapan mineral tipe porfiri, mesotermal sampai epitermal (Corbett dan Leach, 1996). Tipe porfiri terbentuk pada kedalaman lebih besar dari 1 km dan batuan induk berupa batuan intrusi. Sillitoe, 1993a (dalam Corbett dan Leach, 1996) mengemukakan bahwa endapan porfiri mempunyai diameter 1 sampai > 2 km dan bentuknya silinder.
        Tipe mesotermal terbentuk pada temperatur dan tekanan menengah, dan bertemperatur > 300oC (Lindgren, 1922 dalam Corbett dan Leach, 1996). Kandungan sulfida bijih terdiri dari kalkopirit, spalerit, galena, tertahidrit, bornit, dan kalkosit. Mineral penyerta terdiri dari kuarsa, karbonat (kalsit, siderit, rodokrosit), dan pirit. Mineral alterasi terdiri dari serisit, kuarsa, kalsit, dolomit, pirit, ortoklas, dan lempung.
            Tipe epitermal terbentuk di lingkungan dangkal dengan temperatur < 300oC, dan fluida hidrotermal diinterpretasikan bersumber dari fluida meteorik. Endapan tipe  ini merupakan kelanjutan dari sistem hidrotermal tipe porfiri, dan terbentuk pada busur magmatik bagian dalam di lingkungan gunungapi kalk-alkali atau batuan dasar sedimen (Heyba et al., 1985 dalam Corbett dan Leach, 1996). Sistem ini umumnya mempunyai variasi endapan sulfida rendah dan sulfida tinggi (gambar 4). Mineral bijih terdiri dari timonidsulfat, arsenidsulfat, emas dan perak, stibnite, argentit, cinabar, elektrum, emas murni, perak murni, selenid, dan mengandung sedikit galena, spalerit, dan galena. Mineral penyerta terdiri dari kuarsa, ametis, adularia, kalsit, rodokrosit, barit, flourit, dan hematit. Mineral alterasi terdiri dari klorit, serisit, alunit, zeolit, adularia, silika, pirit, dan kalsit.
http://pillowlava.files.wordpress.com/2011/06/3.jpg?w=590&h=391
Gambar 3: Model mineralisasi emas-perak lingkaran Pasifik
(Corbett, 2002)
http://pillowlava.files.wordpress.com/2011/06/4.png?w=590
Gambar 4: Model fluida sulfida tinggi dan rendah (Corbett dan Leach, 1996)
Morrison, 1997, mengemukakan beberapa asosiasi mineral petunjuk sistem hipogen dalam proses magmatik yang berhubungan dengan mineralisasi epigenetik sebagai berikut:
Tabel 1: Asosiasi mineral petunjuk sistem hipogen dalam proses magmatik yang
berhubungan dengan mineralisasi epigenetik (Morrison, 1997).
http://pillowlava.files.wordpress.com/2011/06/11.png?w=590&h=418

              Zonasi alterasi dapat mempunyai bentuk geometri yang berbeda-beda, mulai dari bentuk konsentris, linier, sampai tidak teratur dan komplek. Zonasi alterasi endapan Porfiri Cu mempunyai bentuk konsentris. Bagian inti/tengah terdiri dari alterasi potasik, berkomposisi potasium feldspar dan biotit. Bagian tengah merupakan zonasi alterasi philik tersusun oleh kuarsa-serisit-pirit. Bagian paling luar mempuyai alterasi propilitik, mineraloginya tersusun oleh kuarsa-klorit-karbonat, dan setempat-setempat terdapat epidot, albit atau adularia. Endapan epitermal berbentuk urat/vein yang berasosiasi dengan struktur mayor mempunyai pola linier dan paralel dengan arah struktur. Urut-urutan zonasi alterasi dari temperatur tinggi ke temperatur rendah adalah argilik sempurna, serisit, argilik, dan propilitik.
                Mineralisasi/alterasi endapan urat yang berasosiasi dengan endapan logam dasar dicirikan oleh zonasi pembentukan mineral dari temperatur tinggi sampai rendah. Urat/vein di daerah proksimal kaya kandungan tembaga dan rasio logam dibanding sulfur tinggi. Daerah ini dicirikan oleh hadirnya alterasi argillik sempurna di bagian dalam dan ke arah luar berubah menjadi alterasi serisitik. Daerah distal kaya kandungan timbal dan zeng, dan terdiri dari mineral sulfida dengan rasio logam dibanding sulfur rendah. Alterasi yang berkembang di daerah ini berupa alterasi propilitik, semakin ke arah jauh dari urat tersusun oleh batuan tidak teralterasi (Panteleyev, 1994; Corbett, 2002).
Tabel 2: Dominasi komposisi mineralisasi/alterasi pada temperatur tinggi dan rendah
(disederhanakan dari Corbett, 2002)
TEMPERATUR TINGGI
TEMPERATUR RENDAH
Kalkopirit
Galena, spalerit
Kuarsa kristalin (comb stucture)
Kalsedon-opal
Kuarsa butir kasar
Kuarsa butir halus
Serisit
Smektit-illit
Philik
Propilitik
http://pillowlava.files.wordpress.com/2011/06/5.jpg?w=590&h=178
Gambar 5: Zonasi proksimal – distal tipe endapan urat logam dasar yang berasosiasi dengan endapan porfiri tembaga/molibdenum (Panteleyev, 1994)

           GuilbertdanPark, 1986, mengemukakan model hubungan antara mineralisasi dan alterasi dalam sistem epitermal (gambar 6). Beberapa asosiasi mineral bijih maupun mineral skunder erat hubungannya dengan besar temperatur larutan hidrotermal pada waktu mineralisasi. Mineral bijih galena, sfalerit dan kalkopirit terbentuk pada horison logam dasar bagian bawah dengan temperatur ≥ 350oC. Pada horison ini alterasi bertipe argilik sempurna dan terbentuk mineral alterasi temperatur tinggi seperti adularia, albit dan feldspar. Fluida hidrotermal di horison logam dasar (bagian tengah) bertemperatur antara 200o- 400oC. Mineral bijih terdiri dari argentit, elektrum, pirargirit dan proustit. Mineral ubahan terdiri dari serisit, adularia, ametis, sedikit mengandung albit. Horison bagian atas terbentuk pada temperatur < 200oC. Mineral bijih terdiri dari emas di dalam pirit, Ag-garamsulfo dan pirit. Mineral ubahan berupa zeolit, kalsit, agat.
http://pillowlava.files.wordpress.com/2011/06/6.jpg?w=590&h=389
Gambar 6: Alterasi hubungannya dengan mineralisasi dalam tipe endapan epitermal
logam dasar (Guilbert dan Park, 1986)

           Berdasarkan pada kisaran temperatur dan pH, komposisi alterasi pada sistem emas-tembaga hidrotermal di lingkaran Pasifik dapat dikelompokan menjadi 6 tipe alterasi  (Corbett dan Leach, 1996), yaitu:
1) Argilik sempurna (silika pH rendah, alunit, dan group mineral alunit-kaolinit.
2) Argilik tersusun oleh anggota kaolin (halosit, kaolin, dikit) dan illit (smektit, selang-seling illlit-smektit, illit) dan group mineral transisi (klorit-illit).
3) Philik tersusun oleh anggota kaolin (piropilit-andalusit) dan illit (serisit-mika putih) berasosiasi dengan mineral pada temperatur tinggi seperti serisit-mika-klorit.
4) Subpropilitik tersusun oleh klorit-zeolit yang terbentuk pada temperatur rendah dan propilitik tersusun oleh klorit-epidot-aktinolit terbentuk pada temperatur rendah.
5) Potasik tersusun oleh biotit-K-feldspar-aktinolit+klinopiroksen.
6) Skarn tersusun oleh mineral kalk-silikat  (Ca-garnet, klinopiroksen, tremolit).
http://pillowlava.files.wordpress.com/2011/06/7.png?w=590&h=764
Gambar 7: Mineralogi alterasi di dalam sistem hidrotermal (Corbett dan Leach, 1996)
Gambar 7: Mineralogi alterasi di dalam sistem hidrotermal (Corbett dan Leach, 1996)